The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis.

نویسندگان

  • Sara Barberán
  • Susanna Fraguas
  • Francesc Cebrià
چکیده

The planarian Schmidtea mediterranea maintains and regenerates all its adult tissues through the proliferation and differentiation of a single population of pluripotent adult stem cells (ASCs) called neoblasts. Despite recent advances, the mechanisms regulating ASC differentiation into mature cell types are poorly understood. Here, we show that silencing of the planarian EGF receptor egfr-1 by RNA interference (RNAi) impairs gut progenitor differentiation into mature cells, compromising gut regeneration and maintenance. We identify a new putative EGF ligand, nrg-1, the silencing of which phenocopies the defects observed in egfr-1(RNAi) animals. These findings indicate that egfr-1 and nrg-1 promote gut progenitor differentiation, and are thus essential for normal cell turnover and regeneration in the planarian gut. Our study demonstrates that the EGFR signaling pathway is an important regulator of ASC differentiation in planarians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration.

Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema...

متن کامل

Follistatin antagonizes activin signaling and acts with notum to direct planarian head regeneration.

Animals establish their body plans in embryogenesis, but only a few animals can recapitulate this signaling milieu for regeneration after injury. In planarians, a pluripotent stem cell population and perpetual signaling of polarity axes collaborate to direct a steady replacement of cells during homeostasis and to power robust regeneration after even severe injuries. Several studies have documen...

متن کامل

Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway

Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...

متن کامل

TOR signaling regulates planarian stem cells and controls localized and organismal growth.

Target of Rapamycin (TOR) controls an evolutionarily conserved signaling pathway that modulates cellular growth and division by sensing levels of nutrients, energy and stress. As such, TOR signaling is a crucial component of tissues and organs that translates systemic signals into cellular behavior. The ubiquitous nature of TOR signaling, together with the difficulty of analyzing tissue during ...

متن کامل

The freshwater planarian flatworm Schmidtea mediterranea is a powerful model organism to study ASC biology, tissue homeostasis, regeneration, and spatial patterning in adult organisms in vivo

1197 ABSTRACT During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 143 12  شماره 

صفحات  -

تاریخ انتشار 2016